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Abstract

Window inference is a transformational style of reasoning with support for the contextual transformation
of sub-terms. Window inference has been successfully used as the basis of various refinement tools. Normal
presentations of completed program refinements closely match the presentations of completed window in-
ference proofs. However, in the development of a program refinement, window inference is not as flexible as
it should be. Current implementations of window inference allow a user to work on only one sub-problem
at a time. While developing a program refinement, a user may wish to work on many sub-problems at
the same time—to quickly switch backwards and forwards between working on the sub-problems. This
paper describes a design for a window inference system which provides simultaneous access to multiple sub-
problems. In the core of the design, access is available to any sub-problem, but constraints can be added on
top of the core in order to provide a hierarchical interface implementing window stacks or window trees. A
further benefit of this design is that, unlike existing designs, it does not require reflexivity of transformation

relations. A prototype implementation of this design in the Isabelle theorem prover is described.

1 Introduction

The refinement calculus of Back [1], Morris [11] and
Morgan [10] offers a basis for the methodological devel-
opment of correct programs from specifications. How-
ever, the use of refinement for the development of large
programs has been limited, partly because of a lack of
suitable tools. Recently, various tools supporting pro-
gram refinement have been developed; one by Grundy
[8], another at the Programming Methods Group of
Abo Akademi [3], and another at the Software Verifica-
tion Research Centre of the University of Queensland
[4]. These tools utilise a hierarchical transformational
style of reasoning called window inference [15, 7, 9] as
the main method of user interaction for the refinement
activity.

The normal presentation of scripts of completed refine-
ments is in a linear form, showing the stepwise devel-
opment of progressively more deeply nested program
fragments. Where the development branches, due to
a conditional or sequential composition, each branch
is refined in turn. Window inference is ideally suited
to replaying such a completed refinement script, as
it provides a way of progressively decomposing sub-
problems for transformation, with the transformation
of different branches happening in succession.

However, during the exploratory development of a pro-
gram refinement, a user may wish to consider more
than one sub-problem at a time, or quickly alternate
between working on different sub-problems. Stan-
dard presentations of window inference are not flexible
enough to allow this.

The traditional view of window inference is outlined
in Section 2. Section 3 describes a design for a system
similar to window inference but which provides simul-
taneous access to multiple sub-problems. On top of
this design, a system of suitably constrained transfor-
mations can implement a hierarchical interface resem-
bling either window stacks or window trees. Following
Grundy [9], an implementation of the design is given
in terms of Natural Deduction, in order to show its
soundness. Section 4 outlines a prototype implemen-
tation of this design on top of the Isabelle theorem
prover.

2 Window Inference

Window inference is a hierarchical transformational
style of reasoning. As a hierarchical style of reasoning,
it provides a mechanism for problem decomposition,
and additionally maintains access to the original prob-
lem formulation while users work on sub-problems. As
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a transformational style of reasoning, it supports the
progressive transformation of terms under various re-
lations. Window inference was first proposed to trans-
form terms under equivalence relations [15] but was
later generalised to support preorder relations [7, 9].

automatic composition of opening rules should be sup-
ported in order to allow the transformation of nested
sub-problems.

Window inference is intended to support interactive
proof—window stacks maintain a conceptually simple

Window inference is the main style of reasoning in

model of a proof suitable for problem decomposition

the Ergo theorem prover [17]. It has also been im-

by humans. Conditional contextual rewriting is a non-

plemented by Grundy [7] on top of the HOL theorem

interactive equivalent to window inference. Condi-

prover [6], and by the author [16] on top of the Isabelle

tional contextual rewriting concentrates upon efficient

theorem prover [14].

2.1 Window Stacks

The central element of window inference is the win-
dow, which contains a term of interest called the focus,
a relation under which the focus is being transformed,
and contextual information which can be used in the
transformation of the focus. Windows are stored in a

automated proof and simplification, rather than on
providing a conceptual model to aid interactive proof.

2.2 Window Stacks as Natural Deduc-
tion
Grundy [9] was the to first describe window inference

in terms of Natural Deduction. This implementation
of window inference allowed an easy soundness argu-

window stack. Each window in a window stack corre-
sponds to a particular sub-problem. The sub-problem
in a window is contained within problems higher in
the stack, with the top window corresponding to the
deepest sub-problem. Only the top window in a win-
dow stack is visible, and only it can be changed.

There are five main operations involved in window in-

ment by appeal to the soundness of Natural Deduction.
This representation of window inference also aided in
(and was motivated by) the implementation of win-
dow inference in theorem provers supporting Natural
Deduction. This implementation is briefly outlined be-
low.

The main component of window inference is a stack of

ference.

Initial window: the initial focus and relation it is to
be transformed under are established in a new
window stack.

Open window: a sub-problem of the top window is
pushed onto the window stack. The new window
inherits any contextual information available in
the parent window, and may also have new con-
textual information.

Close window: the top window is popped from the
window stack, with transformed sub-problem re-
placing the original in the parent window.

Transform window: the focus of the top window is
transformed.

Transform context: the context of the top window
is transformed. This transformation is usually
justified by a separate window inference proof.

Opening rules justify the transformation of a sub-
problem in the context of the parent problem. A col-
lection of opening rules is maintained by the system.
This collection is indexed by the position of the sub-
term accessed by each opening rule. When opening a
window, a user supplies a sub-term position, and the
appropriate opening rule is automatically chosen. The
system can provide ways of deriving opening rules from
a collection of simple opening rules. In particular, the

windows. Each window is represented by a theorem
of the form R(Fy, F,,), where R is a pre-order relation
under which we have transformed an initial focus Fjy
to our current focus F,,. If a window is a higher win-
dow in the stack, it represents a deeper sub-term, with
each child window in the window stack corresponding
to the state of a proof about the transformation of a
sub-term of the parent window.

After the transformation of a sub-window, the trans-
formation of a parent window needs to be justified.
Theorems justifying such transformations are called
opening rules. Each window in the window stack is
joined to its parent window by an opening rule. An
opening rule is of the form

(€= r(f, 1)) = R(FIf), F[f)

where F[f] is the current focus, f is the sub-problem
to be transformed in the surrounding term F', R is the
relation under which the initial focus is transformed, r
the relation for the sub-problem, and C' is additional
contextual information which may be assumed in the
transformation of the sub-problem. Given such an
opening rule, and a sub-problem transformation the-
orem with conclusion 7(f, f'), the transformation of
window containing a theorem R(Fy, F[f]) to resulting
window containing a theorem R(Fy, F[f’]) implicitly
appeals to the transitivity of the relation R.

Window inference was originally developed as a generic

style of inference, allowing reasoning in modal and
other logics. Describing window inference in terms



of a Natural Deduction framework for classical logic
does not allow reasoning in modal logics. In partic-
ular, it does not allow a representation of the modal
contexts of Nickson and Hayes’ program window in-
ference [13]. Nickson and Hayes repeat the essence
of Grundy’s idea of implementing window inference in
an established logic, but give a representation for their
program window inference in terms of a modal func-
tional logic.

3 Flexible Window Inference

Window inference was originally proposed as a hierar-
chical style of equational reasoning. Grundy [9] gener-
alised window inference by removing the requirement
that relations be transitive, in order to reason about
the transformations of terms under preorders such as
the refinement relation. Below, window inference is
generalised by teasing apart its hierarchical nature, so
that it can provide a more flexible basis for transfor-
mational reasoning in a graphical user interface (GUI).
We will follow Grundy [9] in describing this style of
reasoning in terms of Natural Deduction. Thus, we
would in a similar way easily get soundness results for
this style of reasoning. However, this point is not pur-

might begin developing one branch, but before com-
pleting that development, fully develop a simpler al-
ternative branch. This kind of development is not en-
couraged by window inference. The user would have
to explicitly close back to an earlier parent node, and
open on the alternative child in order to transform it.

3.2 Flexible Window Inference

Window inference is especially concerned with provid-
ing a facility for the transformation of sub-terms. How-
ever, after transforming a sub-term and subsequently
closing back to the top-level term, we will have trans-
formed the top-level term.

Thus, instead of thinking of the state of a window
inference proof as a stack of windows represented by
theorems, we could instead think of the logical state
of a window inference proof as just the theorem rep-
resenting the top-most window. Then, a sub-window
is a derived view of the top-level theorem, providing
information about its focus and context. We call a
rule which derives a sub-window view a locus. Instead
of maintaining these sub-windows as a stack, we may
wish to manage them in a more flexible way, in order
to have access to more than one window at a time.
This is the core idea of flexible window inference.

sued in further detail here.

3.1 Supporting a Transformation GUI

User interfaces should be based on designs which
match the conceptual models of its users in useful
ways. Ideas for new styles of user interfaces can
place new demands upon underlying implementations.
Back’s refinement diagrams [2] have been proposed as
a way of displaying refinement histories. However,
refinement diagrams place new demands upon win-
dow inference’s ability to provide a logical model be-
hind program refinement GUIs. Refinement diagrams
can display the history of a refinement in a way that
hides the order of development for independent sub-
components. As part of a development environment,
a user would be presented with leaves of the develop-
ment tree, any of which could be selected for further re-
finement. Window inference cannot easily reflect this
presentation, as window stacks limit the user’s atten-
tion to one sub-component at a time.

For example, consider Morgan’s square-root refine-
ment case study [10], as illustrated in a refinement
diagram pictured in Figure 1. Moran’s presentation of
the the refinement proceeds depth-first, following the
numbers given in the figure. However, if such a dia-
gram was progressively created by a user in the course
of a refinement, it would be easy to imagine a user
choosing to develop the branches of the refinement in
the order given as the letters in the figure. So, a user

The main operations of flexible window inference are
as follows.

Initial Window: the initial focus is established in a
new top-level window.

Transform at a position: that position and its cor-
responding opening rule must be present in the
current loci. Given a user-supplied theorem
showing the transformation of the sub-term at
that position, the opening rule is used to justify
the transformation of the top-level theorem.

Add a locus: the new locus must not access a po-
sition which is already accessed by the current
loci.

Remove a locus: a locus is removed from the cur-
rent loci.

Transform the context of a locus: the context-
management function for a locus is updated to
represent a transformation of its context.

3.3 Flexible Window Inference as Nat-
ural Deduction

An outline of an design for flexible window inference
in terms of Natural Deduction is given below.

A flexible window inference proof has a state, which
consists of three parts:



SPEC| |VAR |
SPEC || |INV |
SPEC || |SEQ |
SPEC|| |ASGN
SPEC DO —
SPEC|| |SEQ |
SPEC || |ASGN
SPEC || | coND
SPEC || |ASGN
SPEC || |ASGN

Figure 1: A Back refinement diagram overview of a completed refinement. Numbers indicate Morgan’s order
of development steps. Letters indicate a hypothetical alternative development order.

1. a top-level theorem R(Fy,F,) describing the
transformation of the initial top-level term Fj
to the current top-level term F,, under some re-
lation R;

2. a collection of distinct positions p; and corre-
sponding opening rules Op; of the form

(Ci = rifi, fi)) = R(ELf], Eilf])

where each position p; corresponds to the ‘term
with a hole’ F;[—], and each F;[f;] when instan-
tiated, unifies with the current top-level term;
and

3. a context management function which trans-
forms an opening rule Op; with context C; into
an opening rule with context C.

A locus is the combination of an opening rule together
with the position to which it provides access. Each
locus provides a view upon the state of the proof. The
context available through a locus is massaged by the
context-management function.

In this general setting, the position of a locus may be
contained within the position of another locus. At this
level, no action is specified if a locus is rendered ill-
formed by the transformation of the state at another
locus. Loci management policies may be implemented
at higher-levels of the user-interface in order to deal
with this problem.

The main operations of flexible window inference are
implemented as follows.

Initial Window: for a focus f, the initial state con-
sists of a top-level theorem f = f, an empty
collection of loci, and correspondingly an empty
context management function.

Transform at a position: for a p which is the posi-
tion projection of some current locus with open-
ing rule

(Ci = ri(fi, f})) = R(E[fi), B

a user supplied transformation theorem r;(f, f'),
an appropriate relation composition theorem

R(Fy, F,) A R'(Fn, F) = R"(Fy, F)

is chosen to change the state R(Fy, F[f]) to a
new state R'(Fy, F[f']) The loci and context
management function are unchanged.

Add a locus: for a new locus whose position projec-
tion the is not among the position projections of
the current loci, the new locus is added to the
current loci. The context management function
at that position is the identity function. The
top-level theorem is unchanged.

Remove a locus: a locus is removed from the loci,
and correspondingly from the context manage-
ment function. The top-level theorem is un-
changed.



Transform the context of a locus: for a rule f
transforming the context of an opening rule de-
rived from a locus with position projection p, the
current context management function H is over-

sub-windows. Moreover, if we consider more general
relation composition theorems instead of transitivity
theorems, then we can reason about certain kinds of
irreflexive relations. For example, if we wish to trans-

written at position p by f o H(p). The top-level
theorem is unchanged.

3.4 Problems and Benefits

The standard difficulty with opening at multiple foci
independently is that it is not sound to use context
from certain multiple window opening rules simulta-
neously. For example, consider the opening rules for

form an initial focus f under the relation <, then we
can create an initial theorem f < f, and rely upon the
relation composition theorem:

(a<b)A(b<ec)=—a<c

3.5 Constraints: Stacks and Trees

transforming each side of a conjunction:

This presentation of window inference has abstracted

— AAB=A"AB
— AAB=AADB

(B= (A= 4))
(A= (B =B)

In order to transform a focus term A A B, we cannot
both assume A to transform sub-focus B and simulta-
neously assume B to transform sub-focus A. However,
if we maintain sub-windows as a collection of opening
rules, then the context for each sub-problem is effec-
tively re-derived after each implicit transformation of
the top-level focus. So, for example, after using con-
text B to transform the sub-focus A to A’, the derived
context for a sub-focus on B would be A’.

Thus the effect of a transformation may be non-local,
in that the transformation of a focus may change the
context for another focus. This should to be carefully
managed by higher-levels of an interface either by re-
stricting the occurrence of side-effecting focus trans-
formations, or by providing appropriate information
to a user indicating the occurrence of a side-effecting
transformation.

The transformation of the top-level theorem can ren-
der a locus invalid by:

e making the position in that locus not a valid po-
sition in the top-level term; or by

e making the ‘term with a hole’ F[—] not match
the top-level term.

Such a locus can be automatically removed from the
loci, be hidden, or be managed in some other way by
the interface.

The design presented above leads to a more relaxed
view about the reflexivity requirement of relations in
window inference. In Grundy’s design for window in-
ference, for every window in the stack with initial focus
f, the reflexivity of a relation r is used to create its
initial theorem r(f, f). However, in the setting out-
lined above, we may only represent the top window as
a theorem. Hence, we only demand reflexivity for the
relation in the top window, and not for relations in

away from the hierarchical nature of traditional win-
dow inference. This should provide a more flexible
basis for GUIs supporting transformational reasoning.
However, some kind of hierarchy of proof may fit bet-
ter with a mental model of transformational reasoning.
We leave this question to Human-Computer Interac-
tion researchers. Certainly as noted above, a hierarchy
of window stacks means that contextual information is
only used locally. So, window stacks or window trees
may turn out to provide the basis for a more usable
kind of GUI.

We can implement window stacks or window trees in
this general framework by imposing additional con-
straints on the opening rules.

For example, for a suitable definition of ‘deepest locus’,
we would have an implementation of window stacks if
we:

1. force all transformations to operate upon the
deepest locus; and

2. only allow the addition of loci at positions inside
the deepest locus.

Similarly, for a suitable definition of ‘leaf locus’, we
would have an implementation of window trees if we:

. force all transformations to operate upon a leaf
locus; and

only allow the addition of loci at position inside
a leaf locus.

Other, more flexible, approaches to accessing and
maintaining loci may be required for a graphical user
interface. The prototype described below provides a
suitable framework for experimenting with such ap-
proaches.



4 An Isabelle Prototype

4.1 The Isabelle Theorem Prover

4.2 Prototype Architecture

Isabelle’s meta-logic provides a suitable basis for mod-
elling the generic description of flexible window infer-
ence as Natural Deduction.

Isabelle [14] is a generic theorem prover in the LCF
tradition [5]. Isabelle is written in SML, the type dis-
cipline of which prohibits invalid theorems. The only
way of constructing a value in the type of theorems
thm is by appeal to axioms and basic primitive infer-
ences represented by values and functions of type thm.
This means that we can safely program inference envi-
ronments on top of Isabelle. The standard backward-
reasoning goalstack package supplied with Isabelle is
one such inference environment. The flexible window
inference prototype outlined later in this section is an-
other.

As a generic theorem prover, Isabelle can represent a
wide variety of logics. Isabelle represents both the syn-
tax of its meta-logic, and all the syntax of its object
logics, in a term language which is a datatype in SML.
The language provides constants, application, lambda
abstraction, and bound, free and scheme variables!.

Isabelle’s meta-logic is an intuitionistic polymorphic
higher-order logic. Isabelle provides the following con-
stants to represent rules and axioms.

Meta-level universal quantification A, is used to
represent variable-capture side-conditions in the
statement of rules or axiom-schemes in an object
logic;

Meta-level implication —>, is used to represent
rules of an object logic. This corresponds to en-
tailment for non-modal logics.

Meta-level equality =, is used to represent defini-
tions of an object logic.

The constants construct propositions: terms of type
prop. The statement of a theorem is given by a term
of this type.

The semantics of Isabelle’s object logics are given by
declaring axioms and inference rules. Definitional or
axiomatic extensions to a object logics are possible.
Theories? can be combined under a structured man-
agement of theorems and their theories provided in
the core system. Isabelle also provides tactics and tac-
ticals, a backward proof interface, advanced parsing
and pretty-printing support, and a growing collection
of generic decision procedures and other proof tools
which are applicable to many object logics.

The three parts of the state of a flexible window infer-
ence proof are represented fairly directly by an SML
type winstate. This type is a triple composed of the
following types.

thm: of the form A z1,...2m. A = R(Fo, Fy,) describ-
ing how we have transformed an initial focus
Fy to the current focus F, under some relation
R using unproven assumptions A and variables
Tiy...0m.

which is a list of values of type locus. A locus

is of list of pairs of positions and theorems. The
position that a locus provides access to is the
composition of the positions in this list, and the
opening rule associated with the locus is compo-
sition of the theorems in the list. This represen-
tation provides a way to support the derivation
of opening rules accessing deep sub-terms. All
of the loci should be distinct in their position
projections.

loci:

position -> (thm -> thm seq): which is a function
transforming the composed opening rule for a
locus with the given position projection in the
context of the current top-level theorem.

Under Isabelle’s higher-order unification, a function
variable may sometimes unify with a term in many
ways. So for example, if we use an opening rule
arg_cong:

r=y= f(z) = f(y)

to access a top-level theorem with focus AA B = z,
then ¢ could unify with any of A, B, or AA B. So, we
must use the position information associated with a
locus in order to constrain the composition of opening
rules in a locus. The position description used in the
Isabelle prototype is similar to Grundy’s [7], but is not
described further here.

4.3 A Transformational Tactic Envi-
ronment

In Isabelle’s backward proof package, tactics are the
mechanism provided for changing the state of the
proof. There, the state is of type thm, and tactics
are of type thm -> thm seq. Isabelle’s higher-order
unification can potentially produce an infinite number
of unifiers, and hence the sequence seq is a lazy list

1Scheme variables are logically equivalent to free variables in Isabelle’s meta-logic. They differ in that scheme variables can be

instantiated during unification.
2In Isabelle, object logics and theories are equivalent.



of possible results of the tactic. It is possible to back-
track over these results, in order to see each result in
turn.
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